The Lebesgue function for Hermite-Fejér interpolation on the extended Chebyshev nodes

Author:

Smith Simon J.

Abstract

Given fC[−1, 1] and n point (nodes) in [−1, 1], the Hermite-Fejér interpolation polynomial is the polynomial of minimum degree which agrees with f and has zero derivative at each of the nodes. In 1916, L. Fejér showed that if the nodes are chosen to be zeros of Tn (x), the nth Chebyshev polynomial of the first kind, then the interpolation polynomials converge to f uniformly as n → ∞. Later, D.L. Berman demonstrated the rather surprising result that this convergence property no longer holds true if the Chebyshev nodes are extended by the inclusion of the end points −1 and 1 in the interpolation process. The aim of this paper is to discuss the Lebesgue function and Lebesgue constant for Hermite-Fejér interpolation on the extended Chebyshev nodes. In particular, it is shown that the inclusion of the two endpoints causes the Lebesgue function to change markedly, from being identically equal to 1 for the Chebyshev nodes, to having the form 2n2(1 − x2)(Tn (x))2 + O (1) for the extended Chebyshev nodes.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference9 articles.

1. Über interpolation;Fejér;Göttinger Nachrichten,1916

2. Lebesgue functions for polynomial interpolation — a survey;Brutman;Ann. Numer. Math.,1997

3. Approximation Theory and Methods

4. Über die interpolatorische Darstellung stetiger Funktionen;Faber;Jahresber. Deutsch. Math.-Verein.,1914

5. Necessary and sufficient conditions for uniform convergence of quasi-Hermite-Fejér and extended Hermite-Fejér interpolation;Bojanić;Studia Sci. Math. Hungar.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3