Author:
CABRERA-SERRANO ANA M.,MENA-JURADO JUAN F.
Abstract
We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$-space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$. We also show that if $X$ is a nice Banach space whose closed unit ball has the Krein–Milman property, then $X$ is $l_{\infty }^{n}$ for some $n\in \mathbb{N}$. The proof of our results relies on the structure topology.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nice operators and nice spaces;Linear and Multilinear Algebra;2024-05-08
2. Preservation of Extreme Points;Mathematics;2022-06-29