Abstract
In this paper we obtain criteria of stability for ηEinstein k-contact manifolds, for Sasakian manifolds of constant ϕ-sectional curvature and for 3-dimensional Sasakian manifolds. Moreover, we show that a stable compact Einstein contact metric manifold M is Sasakian if and only if the Reeb vector field ξ minimises the energy functional. In particular, the Reeb vector field of a Sasakian manifold M of constant ϕ-holomorphic sectional curvature +1 minimises the energy functional if and only if M is not simply connected.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the stability of T-space forms;Journal of Geometry and Physics;2024-05
2. References;Harmonic Vector Fields;2012