Abstract
AbstractWe study the discrete dynamics of standard (or left) polynomials
$f(x)$
over division rings D. We define their fixed points to be the points
$\lambda \in D$
for which
$f^{\circ n}(\lambda )=\lambda $
for any
$n \in \mathbb {N}$
, where
$f^{\circ n}(x)$
is defined recursively by
$f^{\circ n}(x)=f(f^{\circ (n-1)}(x))$
and
$f^{\circ 1}(x)=f(x)$
. Periodic points are similarly defined. We prove that
$\lambda $
is a fixed point of
$f(x)$
if and only if
$f(\lambda )=\lambda $
, which enables the use of known results from the theory of polynomial equations, to conclude that any polynomial of degree
$m \geq 2$
has at most m conjugacy classes of fixed points. We also show that in general, periodic points do not behave as in the commutative case. We provide a sufficient condition for periodic points to behave as expected.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献