Abstract
A Ducci sequence is a sequence of integer $n$-tuples generated by iterating the map $$\begin{eqnarray}D:(a_{1},a_{2},\ldots ,a_{n})\mapsto (|a_{1}-a_{2}|,|a_{2}-a_{3}|,\ldots ,|a_{n}-a_{1}|).\end{eqnarray}$$ Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given $n$. We prove a new upper bound in the case where $n$ is a power of a prime $p\equiv 5\hspace{0.6em}({\rm mod}\hspace{0.2em}8)$ for which $2$ is a primitive root and the Pellian equation $x^{2}-py^{2}=-4$ has no solutions in odd integers $x$ and $y$.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献