Author:
DEREGOWSKA BEATA,LEWANDOWSKA BARBARA
Abstract
AbstractLet $X={\mathcal{C}}_{0}(2{\it\pi})$ or $X=L_{1}[0,2{\it\pi}]$. Denote by ${\rm\Pi}_{n}$ the space of all trigonometric polynomials of degree less than or equal to $n$. The aim of this paper is to prove the minimality of the norm of de la Vallée Poussin’s operator in the set of generalised projections ${\mathcal{P}}_{{\rm\Pi}_{n}}(X,\,{\rm\Pi}_{2n-1})=\{P\in {\mathcal{L}}(X,{\rm\Pi}_{2n-1}):P|_{{\rm\Pi}_{n}}\equiv \text{id}\}$.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. Sur la meilleure approximation des fonctions d’une variable réelle par des expressions d’ordre donné;de la Vallée Poussin;C. R. Acad. Sci. Paris,1918
2. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
3. On the uniqueness of the Fourier projection in Lpspaces;Shekhtman;J. Concr. Appl. Math.,2010
4. On the degree of approximation by the operators of de la Vall�e Poussin
5. [9] H. Mehta , ‘The $L_{1}$ norm of the generalized de la Vallée Poussin kernel’, (2013), 1–12; arXiv:1311.1407 [math.CA].
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献