Author:
Robertson W.J.,Saxon S.A.,Robertson A.P.
Abstract
This note presents a structure theorem for locally convex barrelled spaces. It is shown that, corresponding to any Hamel basis, there is a natural splitting of a barrelled space into a topological sum of two vector subspaces, one with its strongest locally convex topology. This yields a simple proof that a barrelled space has a dense infinite-codimensional vector subspace, provided that it does not have its strongest locally convex topology. Some further results and examples discuss the size of the codimension of a dense vector subspace.
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Distinguished $$C_{p}\left( X\right) $$ spaces and the strongest locally convex topology;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-09-07
2. Feral dual spaces and (strongly) distinguished spaces C(X);Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-04-03
3. On Distinguished Spaces $$C_p(X)$$ of Continuous Functions;Springer Proceedings in Mathematics & Statistics;2023
4. Distinguished $$ C_{p}(X) $$ spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2020-11-25
5. Mackey hyperplanes/enlargements for Tweddle’s space;Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas;2013-12-18