Author:
Loxton J.H.,van der Poorten A.J.
Abstract
Let α1, …, αm be distinct complex numbers and τ(1), …, τ(m) be non-negative integers. We obtain conditions under which the functionsform a perfect system, that is, for every set ρ(1), …, ρ(m) of non-negative integers, there are polynomials a1 (z), …, am (z) with respective degrees exactly ρ(1)−1, …, ρ(m)−1, such that the functionhas a zero of order at least ρ(1) + … + ρ(m)−1 at the origin. Moreover, subject to the evaluation of certain determinants, we give explicit formulae for the approximating polynomials a1 (z), …, am (z).
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Perfect approximation of functions
2. Perfect systems;Mahler;Compositio Math.,1968
3. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil 1;Mahler;J. reine angew. Math.,1932
4. On Some Diophantine Inequalities Involving the Exponential Function
5. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II;Mahler;J. reine angew. Math.,1932
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献