ON A CONJECTURE CONCERNING THE NUMBER OF SOLUTIONS TO

Author:

LE MAOHUAORCID,STYER ROBERTORCID

Abstract

Abstract Let a, b, c be fixed coprime positive integers with $\min \{ a,b,c \}>1$ . Let $N(a,b,c)$ denote the number of positive integer solutions $(x,y,z)$ of the equation $a^x + b^y = c^z$ . We show that if $(a,b,c)$ is a triple of distinct primes for which $N(a,b,c)>1$ and $(a,b,c)$ is not one of the six known such triples, then $c>10^{18}$ , and there are exactly two solutions $(x_1, y_1, z_1)$ , $(x_2, y_2, z_2)$ with $2 \mid x_1$ , $2 \mid y_1$ , $z_1=1$ , $2 \nmid y_2$ , $z_2>1$ , and, taking $a<b$ , we must have $a=2$ , $b \equiv 1 \bmod 12$ , $c \equiv 5\, \mod 12$ , with $(a,b,c)$ satisfying further strong restrictions. These results support a conjecture put forward by Scott and Styer [‘Number of solutions to $a^x + b^y = c^z$ ’, Publ. Math. Debrecen88 (2016), 131–138].

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference23 articles.

1. Differences between Perfect Powers

2. The equation $x+y=1$ in finitely generated groups;Beukers;Acta Arith.,1996

3. On the Diophantine equation ${a}^x+{b}^y={c}^z$ I;Cao;Chinese Sci. Bull.,1986

4. Applications of the hypergeometric method to the generalized Ramanujan–Nagell equation;Bauer;Ramanujan J.,2002

5. Sur la divisibilité de la différence des puissance de deux nombres entiers par une puissance d’un idéal premier;Gel’fond;Mat. Sb.,1940

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3