Abstract
First, we extend the notion of stratified spaces to diffeology. Then we characterise the subspace of stratified differential forms, or zero-perverse forms in the sense of Goresky–MacPherson, which can be extended smoothly into differential forms on the whole space. For that we introduce an index which outlines the behaviour of the perverse forms on the neighbourhood of the singular strata.
Publisher
Cambridge University Press (CUP)
Reference24 articles.
1. La stabilité topologique des applications polynomiales;Thom;Enseign. Math.,1962
2. Example of singular reduction in symplectic diffeology
3. Differential Geometry of Singular Spaces and Reduction of Symmetry
4. [9] P. Iglesias-Zemmour , Fibrations Difféologique et Homotopie, Thèse d’état, Université de Provence, Marseille, 1985. http://math.huji.ac.il/∼piz/documents/TheseEtatPI.pdf.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differential forms on manifolds with boundary and corners;Indagationes Mathematicae;2019-09
2. DIFFERENTIAL FORMS ON STRATIFIED SPACES II;Bulletin of the Australian Mathematical Society;2019-01-04