Abstract
Let G be a locally finite group, k a field of characteristic p ≥ 0 and V a right kG-module. We say that V is an -module over kG, if each p′-subgroup H of G contains a finite subgroup F with the same fixed points as H in V. (By convention, 0′ is taken as the set of all primes.) Such modules arise as elementary abelian section of -groups, a class of locally finite groups similar in many ways to the class of finite soluble groups.The main theorem is that if V is an -module over kG with trivial Frattini submodule, and G is almost abelian, then every composition factor of V is complemented. This is a crucial ingredient in Tomkinson's theory of prefrattini subgroups in a certain subclass of . An example is given to show that the theorem breaks down for metabelian G. This leads to an example of a -group in which there are no analogues of prefrattini subgroups - the first situation where one of the standard conjugacy classes of subgroups of finite soluble groups has no decent analogue in the whole class
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献