Abstract
A consequence of the main proposition includes results of Tacon, and John and Zizler and says: If a Banach space X possesses a continuous Gâteaux differentiable function with bounded nonempty support and with norm-weak continuous derivative, then its dual X* admits a projectional resolution of the identity and a continuous linear one-to-one mapping into c0 (Γ). The proof is easy and selfcontained and does not use any complicated geometrical lemma. If the space X is in addition weakly countably determined, then X* has an equivalent dual locally uniformly rotund norm. It is also shown that l∞ admits no continuous Gâteaux differentiable function with bounded nonempty support.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献