Abstract
Abstract
For any x in
$[0,1)$
, let
$[a_1(x),a_2(x),a_3(x),\ldots ]$
be its continued fraction. Let
$\psi :\mathbb {N}\to \mathbb {R}^+$
be such that
$\psi (n) \to \infty $
as
$n\to \infty $
. For any positive integers s and t, we study the set
$$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$
and determine its Hausdorff dimension.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献