THE SECOND SHIFTED DIFFERENCE OF PARTITIONS AND ITS APPLICATIONS

Author:

GOMEZ KEVINORCID,MALES JOSHUAORCID,ROLEN LARRYORCID

Abstract

AbstractA number of recent papers have estimated ratios of the partition function $p(n-j)/p(n)$ , which appear in many applications. Here, we prove an easy-to-use effective bound on these ratios. Using this, we then study the second shifted difference of partitions, $f(\,j,n) := p(n) -2p(n-j) +p(n-2j)$ , and give another easy-to-use estimate of $f(\,j,n)$ . As applications of these, we prove a shifted convexity property of $p(n)$ , as well as giving new estimates of the k-rank partition function $N_k(m,n)$ and non-k-ary partitions along with their differences.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference20 articles.

1. Hyperbolicity of the partition Jensen polynomials;Larson;Res. Number Theory,2019

2. Asymptotic behavior of high-order differences of the partition function

3. Asymptotic Formulaae in Combinatory Analysis

4. A general method for proving the non-trivial linear homogeneous partition inequalities

5. [19] Schneider, R. , ‘Nuclear partitions and a formula for $p(n)$ ’, Preprint, 2020, arXiv:1912.00575.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3