Abstract
AbstractWe prove that for any prime power$q\notin \{3,4,5\}$, the cubic extension$\mathbb {F}_{q^{3}}$of the finite field$\mathbb {F}_{q}$contains a primitive element$\xi $such that$\xi +\xi ^{-1}$is also primitive, and$\operatorname {\mathrm {Tr}}_{\mathbb {F}_{q^{3}}/\mathbb {F}_{q}}(\xi )=a$for any prescribed$a\in \mathbb {F}_{q}$. This completes the proof of a conjecture of Guptaet al.[‘Primitive element pairs with one prescribed trace over a finite field’,Finite Fields Appl.54(2018), 1–14] concerning the analogous problem over an extension of arbitrary degree$n\ge 3$.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. Efficient exponentiation using precomputation and vector addition chains
2. [5] Sutherland, A. V. , ff_poly, version 1.2.7, 2015, available from https://math.mit.edu/~drew/ff_ poly_v1.2.7.tar.
3. [1] Booker, A. R. , Cohen, S. D. , Leong, N. and Trudgian, T. , ‘Primitive elements with prescribed traces’, Preprint, 2022, arXiv:2112.10268.
4. Primitive element pairs with one prescribed trace over a finite field
5. [6] The PARI Group, PARI/GP version 2.13.3, Univ. Bordeaux, 2021, available from http://pari.math.u- bordeaux.fr/.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献