Abstract
Let $G$ be a locally compact amenable group and $A(G)$ and $B(G)$ be the Fourier and the Fourier–Stieltjes algebras of $G,$ respectively. For a power bounded element $u$ of $B(G)$, let ${\mathcal{E}}_{u}:=\{g\in G:|u(g)|=1\}$. We prove some convergence theorems for iterates of multipliers in Fourier algebras.(a) If $\Vert u\Vert _{B(G)}\leq 1$, then $\lim _{n\rightarrow \infty }\Vert u^{n}v\Vert _{A(G)}=\text{dist}(v,I_{{\mathcal{E}}_{u}})\text{ for }v\in A(G)$, where $I_{{\mathcal{E}}_{u}}=\{v\in A(G):v({\mathcal{E}}_{u})=\{0\}\}$.(b) The sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges for every $v\in A(G)$ if and only if ${\mathcal{E}}_{u}$ is clopen and $u({\mathcal{E}}_{u})=\{1\}.$(c) If the sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges weakly in $A(G)$ for some $v\in A(G)$, then it converges strongly.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献