Abstract
Abstract
Let G be a finite group and
$\mathrm {Irr}(G)$
the set of all irreducible complex characters of G. Define the codegree of
$\chi \in \mathrm {Irr}(G)$
as
$\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$
and let
$\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$
be the codegree set of G. Let
$\mathrm {A}_n$
be an alternating group of degree
$n \ge 5$
. We show that
$\mathrm {A}_n$
is determined up to isomorphism by
$\operatorname {cod}(\mathrm {A}_n)$
.
Publisher
Cambridge University Press (CUP)