Abstract
Abstract
For any positive integers
$k_1,k_2$
and any set
$A\subseteq \mathbb {N}$
, let
$R_{k_1,k_2}(A,n)$
be the number of solutions of the equation
$n=k_1a_1+k_2a_2$
with
$a_1,a_2\in A$
. Let g be a fixed integer. We prove that if
$k_1$
and
$k_2$
are two integers with
$2\le k_1<k_2$
and
$(k_1,k_2)=1$
, then there does not exist any set
$A\subseteq \mathbb {N}$
such that
$R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=g$
for all sufficiently large integers n, and if
$1=k_1<k_2$
, then there exists a set A such that
$R_{k_1,k_2}(A,n)-R_{k_1,k_2}(\mathbb {N}\setminus A,n)=1$
for all positive integers n.
Publisher
Cambridge University Press (CUP)