ON THE PARITY OF THE GENERALISED FROBENIUS PARTITION FUNCTIONS

Author:

ANDREWS GEORGE E.ORCID,SELLERS JAMES A.ORCID,SOUFAN FARESORCID

Abstract

AbstractAndrews [Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, 301 (American Mathematical Society, Providence, RI, 1984)] defined two families of functions, $\phi _k(n)$ and $c\phi _k(n),$ enumerating two types of combinatorial objects which he called generalised Frobenius partitions. Andrews proved a number of Ramanujan-like congruences satisfied by specific functions within these two families. Numerous other authors proved similar results for these functions, often with a view towards a specific choice of the parameter $k.$ Our goal is to identify an infinite family of values of k such that $\phi _k(n)$ is even for all n in a specific arithmetic progression; in particular, we prove that, for all positive integers $\ell ,$ all primes $p\geq 5$ and all values $r, 0 < r < p,$ such that $24r+1$ is a quadratic nonresidue modulo $p,$ $$ \begin{align*} \phi_{p\ell-1}(pn+r) \equiv 0 \pmod{2} \end{align*} $$ for all $n\geq 0.$ Our proof of this result is truly elementary, relying on a lemma from Andrews’ memoir, classical q-series results and elementary generating function manipulations. Such a result, which holds for infinitely many values of $k,$ is rare in the study of arithmetic properties satisfied by generalised Frobenius partitions, primarily because of the unwieldy nature of the generating functions in question.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3