Abstract
AbstractLet ρ be a supernilpotent radical. Let ρ* be the class of all rings A such that either A is a simple ring in ρ or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let $\mathcal {L}\left ( \rho ^{\ast }\right ) $ be the lower radical determined by ρ* and let ρφ denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that $\mathcal {L}\left ( \rho ^{\ast }\right ) $ is a supernilpotent radical with $\rho \subseteq \mathcal {L}\left ( \rho ^{\ast }\right ) \subseteq \rho _{\varphi }$ and they asked whether $\mathcal {L} \left ( \rho ^{\ast }\right ) =\rho _{\varphi }$ if ρ is replaced by β, ℒ , 𝒩 or 𝒥 , where β, ℒ , 𝒩 and 𝒥 denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple * -ring without minimal ideals, then $\mathcal {L}\left ( \rho ^{\ast }\right ) $ is a nonspecial radical and consequently $\mathcal {L}\left ( \rho ^{\ast }\right ) \neq \rho _{\varphi }$. We recall that a prime ring A is a * -ring if A/I is in β for every $0\neq I\vartriangleleft A$.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. A question on the characterization of certain upper radical classes;Le Roux;Boll. Unione Mat. Ital. Sez. A,1980
2. *-RINGS AND THEIR RADICALS
3. Prime essential rings