Author:
BARNSLEY MICHAEL F.,MIHALACHE NICOLAE
Abstract
We consider a one-parameter family of dynamical systems $W:[0,1]\rightarrow [0,1]$ constructed from a pair of monotone increasing diffeomorphisms $W_{i}$ such that $W_{i}^{-1}:$$[0,1]\rightarrow [0,1]$$(i=0,1)$. We characterise the set of symbolic itineraries of $W$ using an attractor $\overline{\unicode[STIX]{x1D6FA}}$ of an iterated closed relation, in the terminology of McGehee, and prove that there is a member of the family for which $\overline{\unicode[STIX]{x1D6FA}}$ is symmetrical.
Publisher
Cambridge University Press (CUP)