Abstract
In this paper, we consider the Diophantine equations $$\begin{eqnarray}\displaystyle F_{n}^{q}\pm F_{m}^{q}=y^{p} & & \displaystyle \nonumber\end{eqnarray}$$ with positive integers $q,p\geq 2$ and $\gcd (F_{n},F_{m})=1$, where $F_{k}$ is a Fibonacci number. We obtain results for $q=2$ or $q$ an odd prime with $q\equiv 3\;(\text{mod}\;4),3<q<1087$, and complete solutions for $q=3$.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Almost powers in the Lucas sequence
2. Løsning til oppgave nr 2;Nagell;Nordisk Mat. Tidskr.,1948
3. The g.c.d. in Lucas sequences and Lehmer number sequences;McDaniel;Fibonacci Quart.,1991
4. Fibonacci numbers at most one away from a perfect power
5. On Powers as Sums of Two Cubes
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献