Author:
BETTIO EGLE,JABARA ENRICO
Abstract
This note provides an affirmative answer to Problem 2.6 of Praeger and Schneider [‘Group factorisations, uniform automorphisms, and permutation groups of simple diagonal type’, Israel J. Math. 228(2) (2018), 1001–1023]. We will build groups $G$ (abelian, nonabelian and simple) for which there are two automorphisms $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD}$ of $G$ such that the map $$\begin{eqnarray}T=T_{\unicode[STIX]{x1D6FC}}\times T_{\unicode[STIX]{x1D6FD}}:G\longrightarrow G\times G,\quad g\mapsto (g^{-1}g^{\unicode[STIX]{x1D6FC}},g^{-1}g^{\,\unicode[STIX]{x1D6FD}})\end{eqnarray}$$ is surjective.
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. A theorem on finitely generated hyperabelian groups
2. Combinatorial Group Theory
3. Una nota sui gruppi dotati di un automorfismo uniforme di ordine potenza di un primo;Jabara;Rend. Semin. Mat. Univ. Padova,1990
4. Group factorisations, uniform automorphisms, and permutation groups of simple diagonal type
5. Sugli automorfismi uniformi nei gruppi di Hirsch;Zappa;Ric. Mat.,1958