Abstract
AbstractIn this paper, it is proved that every isometry between the unit spheres of two real Banach spaces preserves the frames of the unit balls. As a consequence, if $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}X$ and $Y$ are $n$-dimensional Banach spaces and $T_0$ is an isometry from the unit sphere of $X$ onto that of $Y$ then it maps the set of all $(n-1)$-extreme points of the unit ball of $X$ onto that of $Y$.
Publisher
Cambridge University Press (CUP)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献