Author:
Saxon Stephen A.,Tweddle Ian
Abstract
The Splitting Theorem says that any given Hamel basis for a (Hausdorff) barrelled space E determines topologically complementary subspaces Ec and ED, and that Ec is flat, that is, contains no proper dense subspace. By use of this device it was shown that if E is non-flat it must contain a dense subspace of codimension at least ℵ0; here we maximally increase the estimate to ℵ1 under the assumption that the dominating cardinal ∂ equals ℵ1 [strictly weaker than the Continuum Hypothesis (CH)]. A related assumption strictly weaker than the Generalised CH allows us to prove that ED is fit, that is, contains a dense subspace whose codimension in ED is dim (ED), the largest imaginable. Thus the two components are extreme opposites, and E itself is fit if and only if dim (ED) ≥ dim (Ec), in which case there is a choice of basis for which ED = E. Morover, E is non-flat (if and) only if the codimension of E′ is at least in E*. These results ensure latitude in the search for certain subspaces of E* transverse to E′, as in the barrelled countable enlargement (BCE) problem, and show that every non-flat GM-space has a BCE.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Distinguished $$C_{p}\left( X\right) $$ spaces and the strongest locally convex topology;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-09-07
2. On Distinguished Spaces $$C_p(X)$$ of Continuous Functions;Springer Proceedings in Mathematics & Statistics;2023
3. Distinguished $$ C_{p}(X) $$ spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2020-11-25
4. The quotient/codimension problems;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2018-06-30
5. Topological Vector Spaces and Their Applications;Springer Monographs in Mathematics;2017