Abstract
In this paper, we characterise the analytic functions ϕ mapping the open unit disk ▵ into itself whose induced composition operator Cϕ: f ↦ f ∘ ϕ is an isometry on the Bloch space. We show that such functions are either rotations of the identity function or have a factorisation ϕ = gB where g is a non-vanishing analytic function from Δ into the closure of ▵, and B is an infinite Blaschke product whose zeros form a sequence{zn} containing 0 and a subsequence satisfying the conditions , and
Publisher
Cambridge University Press (CUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献