Abstract
Robin’s criterion states that the Riemann hypothesis is true if and only if $\unicode[STIX]{x1D70E}(n)<e^{\unicode[STIX]{x1D6FE}}n\log \log n$ for every positive integer $n\geq 5041$. In this paper we establish a new unconditional upper bound for the sum of divisors function, which improves the current best unconditional estimate given by Robin. For this purpose, we use a precise approximation for Chebyshev’s $\unicode[STIX]{x1D717}$-function.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. [11] A. Hertlein , ‘Robin’s inequality for new families of integers’, Preprint, 2016, available at arXiv:1612.05186.
2. Upper bound for sum of divisors function and the Riemann hypothesis
3. Explicit estimates of some functions over primes
4. Robin’s inequality for 11-free integers;Broughan;Integers,2015
5. Abundant Numbers and the Riemann Hypothesis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献