Abstract
Let B be a Banach space. consider the convex proper weakly complete cones X contained in B′ with σ(B′, B) such that X ∩ B′, is conic in the sense of Asimow: that is, there exists α ≥ 0 and f ∈ B″ such that ‖ ‖B ≤ f ≤ α·‖ ‖B on X. This class arises in the theory of integral representations.If B is reflexive, such a cone has a weakly-compact basis. This paper considers the converse problem:- if one requires that X ∩ B′1 be σ(B′, B) metrisable, the existence of X (without a compact σ(B′, B) basis) is equivalent to the statement that B is not a Grothendieck space.However, in every space C(K) with infinitely compact K, one can find such a cone X. If two such cones in B′ are not too far apart, their sum belongs to this class.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Sur les mesures coniques localisables
2. On Banach spaces whose dual balls are not weak∗ sequentially compact
3. Sur les cônes situés dans un espace de Banach et qui ne portent que des mesures coniques localisables;Becker;Séminaire d'Initiation à l'Analyse,1984
4. Sur les cônes engendrés par une famille de convexes compacts;Goullet De Rugy;Bull. Sc. Math.,1973
5. Classical Banach Spaces I
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the Equilibria of Generalized Dynamical Systems;Axioms;2012-12-06
2. Efficiency;Complementarity, Equilibrium, Efficiency and Economics;2002
3. Pareto Optimization in Infinite Dimensional Spaces: The Importance of Nuclear Cones;Journal of Mathematical Analysis and Applications;1994-03