Author:
BOURQUI DAVID,SEBAG JULIEN
Abstract
Let$k$be field of characteristic zero. Let$f\in k[X,Y]$be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation$f(y^{\prime },y)=0$is isomorphic to the formal disc$\text{Spf}(k[[Z]])$.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. The Drinfeld–Grinberg–Kazhdan theorem is false for singular arcs;Bourqui;J. Inst. Math. Jussieu
2. [5] V. Drinfeld , ‘On the Grinberg–Kazhdan formal arc theorem’, Preprint, 2002, arXiv:math/0203263.
3. [2] D. Bourqui and J. Sebag , ‘The Drinfeld–Grinberg–Kazhdan theorem for formal schemes and singularity theory’, Preprint (2015).
4. Arcs, cords, and felts — six instances of the linearization principle
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献