Abstract
AbstractLet
$M=(\begin {smallmatrix}\rho ^{-1} & 0 \\0 & \rho ^{-1} \\\end {smallmatrix})$
be an expanding real matrix with
$0<\rho <1$
, and let
${\mathcal D}_n=\{(\begin {smallmatrix} 0\\ 0 \end {smallmatrix}),(\begin {smallmatrix} \sigma _n\\ 0 \end {smallmatrix}),(\begin {smallmatrix} 0\\ \gamma _n \end {smallmatrix})\}$
be digit sets with
$\sigma _n,\gamma _n\in \{-1,1\}$
for each
$n\ge 1$
. Then the infinite convolution
$$ \begin{align*}\mu_{M,\{{\mathcal D}_n\}}=\delta_{M^{-1}{\mathcal D}_1}\ast\delta_{M^{-2}{\mathcal D}_2}\ast\cdots\end{align*} $$
is called a Moran–Sierpinski measure. We give a necessary and sufficient condition for
$L^2(\,\mu _{M,\{{\mathcal D}_n\}})$
to admit an infinite orthogonal set of exponential functions. Furthermore, we give the exact cardinality of orthogonal exponential functions in
$L^2(\,\mu _{M,\{{\mathcal D}_n\}})$
when
$L^2(\,\mu _{M,\{{\mathcal D}_n\}})$
does not admit any infinite orthogonal set of exponential functions based on whether
$\rho $
is a trinomial number or not.
Publisher
Cambridge University Press (CUP)