Abstract
For $G$ a finite non-Abelian group we write $c(G)$ for the probability that two randomly chosen elements commute and $k(G)$ for the largest integer such that any $k(G)$-colouring of $G$ is guaranteed to contain a monochromatic quadruple $(x,y,xy,yx)$ with $xy\neq yx$. We show that $c(G)\rightarrow 0$ if and only if $k(G)\rightarrow \infty$.
Publisher
Cambridge University Press (CUP)
Reference23 articles.
1. A Roth theorem for amenable groups;Bergelson;Amer. J. Math.,1997
2. Recurrence for semigroup actions and a non-commutative Schur theorem
3. On a problem of Gowers;Shkredov;Izv. Ross. Akad. Nauk Ser. Mat.,2006
4. On Complexes in a Semigroup
5. Limit points in the range of the commuting probability function on finite groups;Hegarty;J. Group Theory,2013
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献