Abstract
AbstractLet W be a real vector space and let V be an orthogonal representation of a group G such that
$V^{G} = \{0\}$
(for the set of fixed points of G). Let
$S(V)$
be the sphere of V and suppose that
$f: S(V) \to W$
is a continuous map. We estimate the size of the
$(H, G)$
-coincidences set if G is a cyclic group of prime power order
$\mathbb {Z}_{p^k}$
or a p-torus
$\mathbb {Z}_p^k$
.
Publisher
Cambridge University Press (CUP)