Abstract
For a primepand integersaandb, we consider Salié sumswhere χ2(x) is a quadratic character and x¯ is the modular inversion ofx, that is,xx¯≡ 1 (modp). One can naturally associate withSp(a, b) a certain angle θp(a, b) ∈ [0, π]. We show that, for any fixed ε > 0, these angles are uniformly distributed in [0, π] whenaandbrun over arbitrary sets , ℬ ⊆ {0, 1, …,p− 1} such that there are at leastp1+εquadratic residues modulopamong the productsab, where (a, b) ∈ × ℬ.
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. [16] Shparlinski I.E. , ‘On the distribution of Kloosterman sums’, Proc. Amer. Math. Soc. (to appear).
2. The distribution of values of Kloosterman sums
3. Minorations de sommes d’exponentielles
4. [6] Fouvry É. and Michel P. , ‘Sur le changement de signe des sommes de Kloosterman’, Ann. Math. (to appear).
5. On the distribution of angles of Kloosterman sums;Adolphson;J. Reine Angew. Math.,1989
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cryptography;Handbook of Finite Fields;2013-06-17