Abstract
AbstractWe provide an easy method for the construction of characteristic polynomials of simple ordinary abelian varieties
${{\mathcal A}}$
of dimension g over a finite field
${{\mathbb F}}_q$
, when
$q\ge 4$
and
$2g=\rho ^{b-1}(\rho -1)$
, for some prime
$\rho \ge 5$
with
$b\ge 1$
. Moreover, we show that
${{\mathcal A}}$
is absolutely simple if
$b=1$
and g is prime, but
${{\mathcal A}}$
is not absolutely simple for any prime
$\rho \ge 5$
with
$b>1$
.
Publisher
Cambridge University Press (CUP)