Abstract
The existence and regularity of solutions to semilinear elliptic Neumann problems are investigated. Motivated by the Poisson–Boltzmann equation of biophysics and semiconductor modeling, the nonlinearity is assumed to be a continuous, strictly monotone increasing function that passes through the origin with asymptotically superlinear and unbounded growth. Pseudomonotone operator theory is utilised to establish the existence and uniqueness of a weak solution in the Sobolev space W1,2. With an additional assumption on the nonlinearity, we show that this weak solution belongs to .
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献