Author:
Komatsu Hiroaki,Nishinaka Tsunekazu,Tominaga Hisao
Abstract
We prove the following theorem: Let R be a ring, l a positive integer, and n a non-negative integer. If for each x, y ∈ R, either xy = yx or xy = xn f(y)x1 for some f(X) ∈ X2Z[X], then R is commutative.
Publisher
Cambridge University Press (CUP)
Reference3 articles.
1. Some Commutativity Conditions for Rings with Unity
2. Commutativity results for semigroups in rings;Bell;Proc. Internal. Sympos. Semigroup Theory,1990
3. Chacron's condition and commutativity theorems;Komatsu;Math. J. Okayama Univ.,1989
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hisao Tominaga;Results in Mathematics;1995-08
2. ON PSEUDO-COMMUTATMTY AND COMMUTATIVITY IN RINGS;Quaestiones Mathematicae;1994-04