Real-world sentence boundary detection using multitask learning: A case study on French

Author:

Lim KyungTaeORCID,Park JungyeulORCID

Abstract

Abstract We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks has rarely been explored in written text, current real-world textual data suffer from widespread lack of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41% for sentences completely lacking punctuation marks. We also present an ablation study and provide a detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference37 articles.

1. Unsupervised Cross-lingual Representation Learning at Scale

2. Devlin, J. , Chang, M. , Lee, K. and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

3. Evang, K. , Basile, V. , Chrupala, G. and Bos, J. (2013). Elephant: Sequence labeling for word and sentence segmentation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, USA. Association for Computational Linguistics, pp. 1422–1426.

4. Hashimoto, K. , Xiong, C. , Tsuruoka, Y. and Socher, R. (2016). A joint many-task model: Growing a neural network for multiple NLP tasks. CoRR, abs/1611.01587.

5. Neudecker, C. (2016). An open corpus for named entity recognition in historic newspapers. In Calzolari N., Choukri K., Declerck T., Goggi S., Grobelnik M., Maegaard B., Mariani J., Mazo H., Moreno A., Odijk J. and Piperidis S. (eds), Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portorož, Slovenia. European Language Resources Association (ELRA), pp. 4348–4352.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3