Query-focused multi-document summarization: automatic data annotations and supervised learning approaches

Author:

CHALI YLLIAS,HASAN SADID A.

Abstract

AbstractIn this paper, we apply different supervised learning techniques to build query-focused multi-document summarization systems, where the task is to produce automatic summaries in response to a given query or specific information request stated by the user. A huge amount of labeled data is a prerequisite for supervised training. It is expensive and time-consuming when humans perform the labeling task manually. Automatic labeling can be a good remedy to this problem. We employ five different automatic annotation techniques to build extracts from human abstracts using ROUGE, Basic Element overlap, syntactic similarity measure, semantic similarity measure, and Extended String Subsequence Kernel. The supervised methods we use are Support Vector Machines, Conditional Random Fields, Hidden Markov Models, Maximum Entropy, and two ensemble-based approaches. During different experiments, we analyze the impact of automatic labeling methods on the performance of the applied supervised methods. To our knowledge, no other study has deeply investigated and compared the effects of using different automatic annotation techniques on different supervised learning approaches in the domain of query-focused multi-document summarization.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference61 articles.

1. Question classification using support vector machines

2. Wallach H. 2002. Efficient Training of Conditional Random Fields. MSc thesis, Division of Informatics, University of Edinburgh.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of an Improved Convolutional Neural Network Algorithm in Text Classification;Journal of Web Engineering;2024-05-25

2. ATS: Auto Text Summarization using Natural Language Processing;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

3. Surveying the landscape of text summarization with deep learning: A comprehensive review;Discrete Mathematics, Algorithms and Applications;2023-12-20

4. Evaluating Text Summarization Using FAHP and TOPSIS Methods in Intelligent Tutoring Systems;Communications in Computer and Information Science;2023

5. A Semantic Fuzzy System to Intelligent Documents Summarization;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3