Abstract
AbstractHumans are naturally endowed with the ability to write in a particular style. They can, for instance, rephrase a formal letter in an informal way, convey a literal message with the use of figures of speech or edit a novel by mimicking the style of some well-known authors. Automating this form of creativity constitutes the goal of style transfer. As a natural language generation task, style transfer aims at rewriting existing texts, and specifically, it creates paraphrases that exhibit some desired stylistic attributes. From a practical perspective, it envisions beneficial applications, like chatbots that modulate their communicative style to appear empathetic, or systems that automatically simplify technical articles for a non-expert audience.Several style-aware paraphrasing methods have attempted to tackle style transfer. A handful of surveys give a methodological overview of the field, but they do not support researchers to focus on specific styles. With this paper, we aim at providing a comprehensive discussion of the styles that have received attention in the transfer task. We organize them in a hierarchy, highlighting the challenges for the definition of each of them and pointing out gaps in the current research landscape. The hierarchy comprises two main groups. One encompasses styles that people modulate arbitrarily, along the lines of registers and genres. The other group corresponds to unintentionally expressed styles, due to an author’s personal characteristics. Hence, our review shows how these groups relate to one another and where specific styles, including some that have not yet been explored, belong in the hierarchy. Moreover, we summarize the methods employed for different stylistic families, hinting researchers towards those that would be the most fitting for future research.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software
Reference331 articles.
1. Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus,
Benchmarks and Metrics for Formality Style Transfer
2. Niu, X. , Rao, S. and Carpuat, M. (2018). Multi-task neural models for translating between styles within and across languages. In Proceedings of the 27th International Conference on Computational Linguistics . Santa Fe, New Mexico, USA: Association for Computational Linguistics, pp. 1008–1021.
3. Sentence Simplification with Deep Reinforcement Learning
4. Lee, J. (2020). Stable style transformer: Delete and generate approach with encoder-decoder for text style transfer. In Proceedings of the 13th International Conference on Natural Language Generation . Dublin: Association for Computational Linguistics, pp. 195–204.
5. Unsupervised Neural Text Simplification
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献