The TREC question answering track

Author:

VOORHEES ELLEN M.

Abstract

The Text REtrieval Conference (TREC) question answering track is an effort to bring the benefits of large-scale evaluation to bear on a question answering (QA) task. The track has run twice so far, first in TREC-8 and again in TREC-9. In each case, the goal was to retrieve small snippets of text that contain the actual answer to a question rather than the document lists traditionally returned by text retrieval systems. The best performing systems were able to answer about 70% of the questions in TREC-8 and about 65% of the questions in TREC-9. While the 65% score is a slightly worse result than the TREC-8 scores in absolute terms, it represents a very significant improvement in question answering systems. The TREC-9 task was considerably harder than the TREC-8 task because TREC-9 used actual users’ questions while TREC-8 used questions constructed for the track. Future tracks will continue to challenge the QA community with more difficult, and more realistic, question answering tasks.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SESAME - self-supervised framework for extractive question answering over document collections;Journal of Intelligent Information Systems;2024-07-30

2. On the Evaluation of Machine-Generated Reports;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. Generative Reader Optimization in the RAG-System;2024 V International Conference on Neural Networks and Neurotechnologies (NeuroNT);2024-06-20

4. BERT-CNN based evidence retrieval and aggregation for Chinese legal multi-choice question answering;Neural Computing and Applications;2024-01-16

5. COPS: An improved information retrieval-based bug localization technique using context-aware program simplification;Journal of Systems and Software;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3