Gamified crowdsourcing for idiom corpora construction

Author:

Eryiğit GülŞenORCID,Şentaş Ali,Monti Johanna

Abstract

Abstract Learning idiomatic expressions is seen as one of the most challenging stages in second-language learning because of their unpredictable meaning. A similar situation holds for their identification within natural language processing applications such as machine translation and parsing. The lack of high-quality usage samples exacerbates this challenge not only for humans but also for artificial intelligence systems. This article introduces a gamified crowdsourcing approach for collecting language learning materials for idiomatic expressions; a messaging bot is designed as an asynchronous multiplayer game for native speakers who compete with each other while providing idiomatic and nonidiomatic usage examples and rating other players’ entries. As opposed to classical crowd-processing annotation efforts in the field, for the first time in the literature, a crowd-creating & crowd-rating approach is implemented and tested for idiom corpora construction. The approach is language-independent and evaluated on two languages in comparison to traditional data preparation techniques in the field. The reaction of the crowd is monitored under different motivational means (namely, gamification affordances and monetary rewards). The results reveal that the proposed approach is powerful in collecting the targeted materials, and although being an explicit crowdsourcing approach, it is found entertaining and useful by the crowd. The approach has been shown to have the potential to speed up the construction of idiom corpora for different natural languages to be used as second-language learning material, training data for supervised idiom identification systems, or samples for lexicographic studies.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference54 articles.

1. Berk, G. , Erden, B. and Güngör, T. (2018). Deep-BGT at PARSEME shared task 2018: Bidirectional LSTM-CRF model for verbal multiword expression identification. In Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), Santa Fe, New Mexico, USA. Association for Computational Linguistics, pp. 248–253.

2. Tailored gamification: A review of literature

3. Lexical or syntactic control of sentence formulation? Structural generalizations from idiom production

4. Multiword Expression Processing: A Survey

5. How to design gamification? A method for engineering gamified software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Crowdsourcing Applications with Map-Based Storytelling Capabilities in Cultural Heritage;Heritage;2024-06-28

2. The advantages of gamification for collecting linguistic data: A case study using Word Ladders;Online Journal of Communication and Media Technologies;2024-04-04

3. Data preparation in crowdsourcing for pedagogical purposes;Slovenščina 2.0: empirical, applied and interdisciplinary research;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3