Hierarchical reinforcement learning for situated natural language generation

Author:

DETHLEFS NINA,CUAYÁHUITL HERIBERTO

Abstract

AbstractNatural Language Generation systems in interactive settings often face a multitude of choices, given that the communicative effect of each utterance they generate depends crucially on the interplay between its physical circumstances, addressee and interaction history. This is particularly true in interactive and situated settings. In this paper we present a novel approach forsituated Natural Language Generationin dialogue that is based onhierarchical reinforcement learningand learns the best utterance for a context by optimisation through trial and error. The model is trained from human–human corpus data and learns particularly to balance the trade-off betweenefficiencyanddetailin giving instructions: the user needs to be given sufficient information to execute their task, but without exceeding their cognitive load. We present results from simulation and a task-based human evaluation study comparing two different versions of hierarchical reinforcement learning: One operates using a hierarchy of policies with a large state space and local knowledge, and the other additionally shares knowledge across generation subtasks to enhance performance. Results show that sharing knowledge across subtasks achieves better performance than learning in isolation, leading to smoother and more successful interactions that are better perceived by human users.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference65 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3