Arabic spelling error detection and correction

Author:

ATTIA MOHAMMED,PECINA PAVEL,SAMIH YOUNES,SHAALAN KHALED,VAN GENABITH JOSEF

Abstract

AbstractA spelling error detection and correction application is typically based on three main components: a dictionary (or reference word list), an error model and a language model. While most of the attention in the literature has been directed to the language model, we show how improvements in any of the three components can lead to significant cumulative improvements in the overall performance of the system. We develop our dictionary of 9.2 million fully-inflected Arabic words (types) from a morphological transducer and a large corpus, validated and manually revised. We improve the error model by analyzing error types and creating an edit distance re-ranker. We also improve the language model by analyzing the level of noise in different data sources and selecting an optimal subset to train the system on. Testing and evaluation experiments show that our system significantly outperforms Microsoft Word 2013, OpenOffice Ayaspell 3.4 and Google Docs.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference51 articles.

1. Shaalan K. , Magdy M. , and Fahmy A. 2013. Analysis and feedback of erroneous arabic verbs. Journal of Natural Language Engineering, Cambridge University, UK. FirstView: 1–53.

2. Zribi C. B. O. , and Ben Ahmed M. 2003. Efficient automatic correction of misspelled arabic words based on contextual information. Lecture Notes in Computer Science, Springer, 2773: 770–777.

3. Och F. J. , and Genzel D. 2013. Automatic spelling correction for machine translation. Patent US 20130144592 A1. June 6, 2013.

4. Shaalan K. , Samih Y. , Attia M. , Pecina P. , and van Genabith J. 2012. Arabic word generation and modelling for spell checking. In Language Resources and Evaluation (LREC), Istanbul, Turkey. pp. 719–725.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BERT-Inspired Progressive Stacking to Enhance Spelling Correction in Bengali Text;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-08

2. TTK: A toolkit for Tunisian linguistic analysis;Computer Speech & Language;2024-06

3. Morphology-Based Spell Checker for Dawurootsuwa Language;Scientific Programming;2023-05-10

4. Automatic Building of a Large Arabic Spelling Error Corpus;SN Computer Science;2022-12-19

5. Hybrid Tamil spell checker with combined character splitting;Concurrency and Computation: Practice and Experience;2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3