SoundexGR: An algorithm for phonetic matching for the Greek language

Author:

Kavros Antrei,Tzitzikas YannisORCID

Abstract

Abstract Text usually suffers from typos which can negatively affect various Information Retrieval and Natural Language Processing tasks. Although there is a wide variety of choices for tackling this issue in the English language, this is not the case for other languages. For the Greek language, most of the existing phonetic algorithms provide rather insufficient support. For this reason, in this paper, we introduce an algorithm for phonetic matching designed for the Greek language: we start from the original Soundex and we redesign and extend it for accommodating the Greek language’s phonetic rules, ending up to a family of algorithms, that we call ${\tt Soundex}_{GR}$ . Then, we report various experimental results showcasing how the algorithm behaves in different scenarios, and we provide comparative results for various parameters of the algorithm for revealing the trade-off between precision and recall in datasets with different kinds of errors. We also provide comparative results with matching using stemming, full phonemic transcription, and edit distance, that demonstrate that ${\tt Soundex}_{GR}$ performs better (indicatively, it achieves F-Score over 95% in collections of similar-sounded words). The simplicity, efficiency, and effectiveness of the proposed algorithm make it applicable and adaptable to a wide range of tasks.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference65 articles.

1. Machine learning of phonetic transcription rules for Greek

2. Techniques for automatically correcting words in text

3. Philips, L. (1990). Hanging on the metaphone. Computer Language 7(12 (December)).

4. Privacy Preserving Record Linkage Using Phonetic Codes

5. Mikolov, T. , Sutskever, I. , Chen, K. , Corrado, G.S. and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pp. 3111–3119.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3