Author:
JHA RAHUL,JBARA AMJAD-ABU,QAZVINIAN VAHED,RADEV DRAGOMIR R.
Abstract
AbstractThis paper summarizes ongoing research in Natural-Language-Processing-driven citation analysis and describes experiments and motivating examples of how this work can be used to enhance traditional scientometrics analysis that is based on simply treating citations as a ‘vote’ from the citing paper to cited paper. In particular, we describe our dataset for citation polarity and citation purpose, present experimental results on the automatic detection of these indicators, and demonstrate the use of such annotations for studying research dynamics and scientific summarization. We also look at two complementary problems that show up in Natural-Language-Processing-driven citation analysis for a specific target paper. The first problem is extracting citation context, the implicit citation sentences that do not contain explicit anchors to the target paper. The second problem is extracting reference scope, the target relevant segment of a complicated citing sentence that cites multiple papers. We show how these tasks can be helpful in improving sentiment analysis and citation-based summarization.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献