Creation of annotated country-level dialectal Arabic resources: An unsupervised approach

Author:

Althobaiti Maha J.ORCID

Abstract

Abstract The wide usage of multiple spoken Arabic dialects on social networking sites stimulates increasing interest in Natural Language Processing (NLP) for dialectal Arabic (DA). Arabic dialects represent true linguistic diversity and differ from modern standard Arabic (MSA). In fact, the complexity and variety of these dialects make it insufficient to build one NLP system that is suitable for all of them. In comparison with MSA, the available datasets for various dialects are generally limited in terms of size, genre and scope. In this article, we present a novel approach that automatically develops an annotated country-level dialectal Arabic corpus and builds lists of words that encompass 15 Arabic dialects. The algorithm uses an iterative procedure consisting of two main components: automatic creation of lists for dialectal words and automatic creation of annotated Arabic dialect identification corpus. To our knowledge, our study is the first of its kind to examine and analyse the poor performance of the MSA part-of-speech tagger on dialectal Arabic contents and to exploit that in order to extract the dialectal words. The pointwise mutual information association measure and the geographical frequency of word occurrence online are used to classify dialectal words. The annotated dialectal Arabic corpus (Twt15DA), built using our algorithm, is collected from Twitter and consists of 311,785 tweets containing 3,858,459 words in total. We randomly selected a sample of 75 tweets per country, 1125 tweets in total, and conducted a manual dialect identification task by native speakers. The results show an average inter-annotator agreement score equal to 64%, which reflects satisfactory agreement considering the overlapping features of the 15 Arabic dialects.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference110 articles.

1. Zbib, R. , Malchiodi, E. , Devlin, J. , Stallard, D. , Matsoukas, S. , Schwartz, R. , Makhoul, J. , Zaidan, O.F. and Callison-Burch, C. (2012). Machine translation of Arabic dialects. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Montréal, Canada. Association for Computational Linguistics, pp. 49–59.

2. DIWAN: A Dialectal Word Annotation Tool for Arabic

3. Bouamor, H. , Habash, N. and Oflazer, K. (2014). A multidialectal parallel corpus of Arabic. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland. European Language Resources Association, pp. 1240–1245.

4. Alsarsour, I. , Mohamed, E. , Suwaileh, R. and Elsayed, T. (2018). Dart: a large dataset of dialectal Arabic tweets. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC’18), Miyazaki, Japan. European Language Resources Association, pp. 3666–3670.

5. Azoulay, A. (2017). World Arabic Language Day 2017. Available at https://en.unesco.org/world-arabic-language-day (accessed 10 September 2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing the Libyan Arabic Dialect Identification: A Comparative Study of Ensemble Classification Methods;2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2024-05-19

2. A Simple Yet Robust Algorithm for Automatic Extraction of Parallel Sentences: A Case Study on Arabic-English Wikipedia Articles;IEEE Access;2022

3. The Large Annotated Corpus for the Arabic Language (LACAL);Recent Innovations in Artificial Intelligence and Smart Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3