Abstract
Abstract
Table-to-text generation aims to generate descriptions for structured data (i.e., tables) and has been applied in many fields like question-answering systems and search engines. Current approaches mostly use neural language models to learn alignment between output and input based on the attention mechanisms, which are still flawed by the gradual weakening of attention when processing long texts and the inability to utilize the records’ structural information. To solve these problems, we propose a novel generative model SAN-T2T, which consists of a field-content selective encoder and a descriptive decoder, connected with a selective attention network. In the encoding phase, the table’s structure is integrated into its field representation, and a content selector with self-aligned gates is applied to take advantage of the fact that different records can determine each other’s importance. In the decoding phase, the content selector’s semantic information enhances the alignment between description and records, and a featured copy mechanism is applied to solve the rare word problem. Experiments on WikiBio and WeatherGov datasets show that SAN-T2T outperforms the baselines by a large margin, and the content selector indeed improves the model’s performance.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software
Reference48 articles.
1. Challenges in Data-to-Document Generation
2. What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment
3. Bahdanau, D. , Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate, arXiv preprint. 1409.0473.
4. Papineni, K. , Roukos, S. , Ward, T. and Zhu, W. J. (2002). BLEU: A method for automatic evaluation of machine translation. Proceedings of the 40th annual meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania: ACL, pp. 311–318.
5. Measuring nominal scale agreement among many raters.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances and challenges in artificial intelligence text generation;Frontiers of Information Technology & Electronic Engineering;2024-01