Emerging trends: Unfair, biased, addictive, dangerous, deadly, and insanely profitable

Author:

Church KennethORCID,Schoene AnnikaORCID,Ortega John E.ORCID,Chandrasekar RamanORCID,Kordoni ValiaORCID

Abstract

AbstractThere has been considerable work recently in the natural language community and elsewhere on Responsible AI. Much of this work focuses on fairness and biases (henceforth Risks 1.0), following the 2016 best seller: Weapons of Math Destruction. Two books published in 2022, The Chaos Machine and Like, Comment, Subscribe, raise additional risks to public health/safety/security such as genocide, insurrection, polarized politics, vaccinations (henceforth, Risks 2.0). These books suggest that the use of machine learning to maximize engagement in social media has created a Frankenstein Monster that is exploiting human weaknesses with persuasive technology, the illusory truth effect, Pavlovian conditioning, and Skinner’s intermittent variable reinforcement. Just as we cannot expect tobacco companies to sell fewer cigarettes and prioritize public health ahead of profits, so too, it may be asking too much of companies (and countries) to stop trafficking in misinformation given that it is so effective and so insanely profitable (at least in the short term). Eventually, we believe the current chaos will end, like the lawlessness in Wild West, because chaos is bad for business. As computer scientists, this paper will summarize criticisms from other fields and focus on implications for computer science; we will not attempt to contribute to those other fields. There is quite a bit of work in computer science on these risks, especially on Risks 1.0 (bias and fairness), but more work is needed, especially on Risks 2.0 (addictive, dangerous, and deadly).

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Useful Things to Know When Combining IR and NLP: The Easy, the Hard and the Ugly;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

2. Emerging trends: When can users trust GPT, and when should they intervene?;Natural Language Engineering;2024-01-16

3. Measuring and Mitigating Gender Bias in Legal Contextualized Language Models;ACM Transactions on Knowledge Discovery from Data;2023-10-18

4. Emerging trends: Deep nets thrive on scale;Natural Language Engineering;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3