Emerging trends: General fine-tuning (gft)

Author:

Ward Church Kenneth,Cai Xingyu,Ying Yibiao,Chen Zeyu,Xun Guangxu,Bian Yuchen

Abstract

AbstractThis paper describes gft (general fine-tuning), a little language for deep nets, introduced at an ACL-2022 tutorial. gft makes deep nets accessible to a broad audience including non-programmers. It is standard practice in many fields to use statistics packages such as R. One should not need to know how to program in order to fit a regression or classification model and to use the model to make predictions for novel inputs. With gft, fine-tuning and inference are similar to fit and predict in regression and classification. gft demystifies deep nets; no one would suggest that regression-like methods are “intelligent.”

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference39 articles.

1. Programming pearls

2. Hinton, G. , Vinyals, O. and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

3. Devlin, J. , Chang, M.-W. , Lee, K. and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4171–4186.

4. Liu, Y. , Ott, M. , Goyal, N. , Du, J. , Joshi, M. , Chen, D. , Levy, O. , Lewis, M. , Zettlemoyer, L. and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.

5. SQuAD: 100,000+ Questions for Machine Comprehension of Text

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Useful Things to Know When Combining IR and NLP: The Easy, the Hard and the Ugly;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

2. Emerging trends: Deep nets thrive on scale;Natural Language Engineering;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3