It all starts with entities: A Salient entity topic model

Author:

Wu ChuanORCID,Kanoulas Evangelos,de Rijke Maarten

Abstract

AbstractEntities play an essential role in understanding textual documents, regardless of whether the documents are short, such as tweets, or long, such as news articles. In short textual documents, all entities mentioned are usually considered equally important because of the limited amount of information. In long textual documents, however, not all entities are equally important: some are salient and others are not. Traditional entity topic models (ETMs) focus on ways to incorporate entity information into topic models to better explain the generative process of documents. However, entities are usually treated equally, without considering whether they are salient or not. In this work, we propose a novel ETM, Salient Entity Topic Model, to take salient entities into consideration in the document generation process. In particular, we model salient entities as a source of topics used to generate words in documents, in addition to the topic distribution of documents used in traditional topic models. Qualitative and quantitative analysis is performed on the proposed model. Application to entity salience detection demonstrates the effectiveness of our model compared to the state-of-the-art topic model baselines.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Text to Context: An Entailment Approach for News Stakeholder Classification;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Towards Self-Contained Answers: Entity-Based Answer Rewriting in Conversational Search;Proceedings of the 2024 ACM SIGIR Conference on Human Information Interaction and Retrieval;2024-03-10

3. An unsupervised perplexity-based method for boilerplate removal;Natural Language Engineering;2023-02-21

4. MultiLayerET: A Unified Representation of Entities and Topics Using Multilayer Graphs;Machine Learning and Knowledge Discovery in Databases;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3